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Abstract. Correlated photons produced by spontaneous parametric down-conversion are an essential tool
for quantum communication, especially suited for long-distance connections. To have a reasonable count
rate after all the losses in the propagation and the filters needed to improve the coherence, it is convenient to
increase the intensity of the laser that pumps the non-linear crystal. By doing so, however, the importance of
the four-photon component of the down-converted field increases, thus degrading the quality of two-photon
interferences. In this paper, we present an easy derivation of this nuisance valid for any form of entanglement
generated by down-conversion, followed by a full study of the problem for time-bin entanglement. We find
that the visibility of two-photon interferences decreases as V = 1 − 2ρ, where ρ is, in usual situations, the
probability per pulse of creating a detectable photon pair. In particular, the decrease of V is independent
of the coherence of the four-photon term. Thanks to the fact that ρ can be measured independently of V ,
the experimental verification of our prediction is provided for two different configuration of filters.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 42.65.Lm Parametric
down conversion and production of entangled photons – 42.50.Dv Nonclassical states of the electromagnetic
field, including entangled photon states; quantum state engineering and measurements

1 Introduction

The distribution of a pair of entangled photons to two
distant partners is the building block of quantum com-
munication protocols [1,2]. The entangled photons are
produced by parametric down-conversion (PDC) in a non-
linear crystal. As well-known, this process creates pairs of
photons at the first order; but when the pumping inten-
sity increases, four- and more-photon components become
important in the down-converted field [3,4]. If one can
post-select the number of photons, higher-photon com-
ponents of the field may turn out to be a useful re-
source (an “entanglement laser”, see [5]). In other cases
however, these higher-number components turn out to
be quite a nuisance. In particular, one is often inter-
ested in two-photon phenomena, just think of the Bell-
state measurement (BSM) that is needed in teleportation.
The presence of higher-number components obviously de-
grades the quality of the two-photon interferences. In long-
distance implementations, one can hardly overcome this
nuisance by working with low pump intensities: after prop-
agation along several kilometers of fibers, many photons
are lost because of the losses in the fibers, and the ef-
ficiency of the detectors at telecom wavelengths is low,
typically 10%. Moreover, if the two photons come from
different sources and have to interfere at a beam-splitter
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(as is the case for the BSM), filters must be introduced
to ensure coherence. Thus, in order to have a reasonable
count rate, one has to increase the pump power — and this
unavoidably increases the number of unwanted higher-
number components. In this paper, we address the degra-
dation of the visibility of two-photon interferences due to
the presence of four-photon components in the field, thus
completing the partial study provided in reference [6].

In Section 2, we give an easy derivation of the topic
and the results that is valid for any form of entangle-
ment generated by down-conversion, under the assump-
tion that the four-photon component is described by two
independent pairs. In the rest of the paper, we relax that
assumption: indeed, the four-photon coherence can vary
from zero (two independent pairs) to one (state of single-
mode down-conversion [7]) according to the experimen-
tal conditions [8–10]. We prove that the loss of visibility
does not depend on the coherence of the four-photon state,
but only on a parameter ρ that is basically the probabil-
ity of creating a detectable pair. For this full study, we
shall focus on time-bin entanglement, a form of entan-
glement that is more robust than polarization for long-
distance applications in optical fibers. Visibilities large
enough to allow the violation of Bell’s inequalities for
two photon [6,11], quantum cryptography [12], and long-
distance teleportation [13] have been demonstrated in the
recent years for this form of entanglement. For time-bin
entanglement, the present study requires the multimode
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formalism, introduced in Section 3. In fact, as the name
suggests, a time-bin qubit is a coherent superposition of
two orthogonal possibilities, the photon being at a given
time t = 0 (first time-bin) or at a later time t = τ (second
time-bin). Separate time-bins must be created by a pump
field consisting of separate pulses: the finite temporal size
(thence, the non-monochromaticity) of the pump pulses
and the down-converted photons is a necessary feature of
time-bin qubits.

In Section 4, we describe a set-up that is used for mea-
sure the parameter ρ. In Section 5, we introduce the set-up
for measuring time-bin entanglement (a Franson interfer-
ometer with a suitable source) and derive our main predic-
tion, namely the decrease of visibility due to the presence
of four-photon components in the state. In Section 6 we
describe the experimental verification of our predictions.
Section 7 is a conclusion. For readability, the technicali-
ties of the formalism used in Sections 4 and 5 are left for
an Appendix. We note that the calculations of the two-
photon coincidence rate provides the first explicit calcula-
tion of time-bin Bell experiments using the full formalism
of quantum optics.

2 Easy derivation for incoherent four-photon
component

The purpose of this section is to derive the main results
from a simple formalism, in order to gain intuition about
the physics of the problem. The content of this section
does not apply only to time-bin entanglement, but to any
form of entanglement obtained by down-conversion, be it
with a cw or with a pulsed pump laser. The probabil-
ities that we are going to introduce in this section are
“per detection window”. In the case of a cw pump, this
means “per time resolution of the detector”; in the case
of a pulsed pump, this means “per pump pulse” (“per
qubit”, in the language of time-bin entanglement [14]).

The calculation is possible in simple terms if we neglect
the coherence of the four-photon term, and assume that
when four photons are produced, they form two indepen-
dent pairs. The process of creation of independent items
obeys the Poissonian statistics: if P2c is the probability
of creating a pair, we have P4c � P 2

2c/2. For the set-up,
we refer to Figure 1. We define ∆a,b as the spectral width
of the photons in mode a, resp. b, after down-conversion,
that is, before the filters; the spectral width of the pump
is denoted ∆p. As for the filters, we suppose that they are
centered in the spectrum of the down-converted photons,
and that they satisfy ∆A,B ≤ ∆a,b to avoid trivialities; fur-
thermore, we suppose ∆A,B � ∆p, so that twin photons
certainly pass both filters, and ∆B ≥ ∆A. Let’s follow the
two- and the four-photon component through the set-up,
until the coincidence detection in modes a1 and b1.

Two-photon component. To have a detection, both
photons must pass the filters; because of the correlation in
energy, if photon a passes through FA (that happens with
probability ∼ ∆A/∆a), then certainly photon b will pass
through FB, because this filter is larger and the photons

Fig. 1. (I) Experimental set-up to measure two-photon in-
terferences, and meaningful parameters. Grey letters: spa-
tial modes in the fibers; PDC: parametric down-conversions;
F: filters. (II) Spectral widths of the down-converted photons
(curves) and filters (grey shadows). Both filters are centered in
the spectrum of the down-converted photons, and their width
are ∆A ≤ ∆B .

are correlated in energy. The photons are twins, therefore
they interfere. Consequently, the detection rate due to
two-photon components is (up to multiplicative factors)

R2 = P2c
∆A

∆a

1
2
[
1 + cos(α + β)

]
. (1)

Four-photon component. Once four photons have been
produced, four two-photon coincidence events are possi-
ble: two events in which we detect photons belonging to
the same pair, and two events in which we detect pho-
tons belonging to different pairs. The first case is similar
to the case of two-photons. In the second case, however,
the fact that photon a passes its filter does not guarantee
at all that photon b will do it as well; and of course, no
interference will take place. All in all,

R4 = P4c

{
2
∆A

∆a

1
2
[
1 + cos(α + β)

]
+ 2

∆A

∆a

∆B

∆b

1
2

}
. (2)

The total count rate is therefore R2+R4 = R̄
[
1+V cos(α+

β)
]
/2 where R̄ � P2c∆A/∆a and where the visibility V is

V =
1

1 +
P2c

1 + P2c

∆B

∆b

= 1 − P2c
∆B

∆b
+ O(P 2

2c). (3)

Recall that ∆B is singled out by the relation ∆B ≥ ∆A.
As expected, V decreases if P2c (proportional to the pump
power) is increased. Note also that ∆B/∆b ≤ 1: for a given
pump power, the visibility increases if filters are in place.
This is intuitive, considering the emission of two pairs:
conditioned to the fact that photon in mode a has passed
the filter FA, a photon passing FB is more likely to be its
twin (whose frequency must lie within the filter) than an
uncorrelated photon (whose frequency may lie everywhere
in the spectrum). Finally, if only one filter is in place, then
∆B/∆b = 1 and we recover the discussion presented in
reference [6].

However, we are not really interested in fixing the
pump power: rather, we’d like to fix the coincidence rate at
the detection R̄. Obviously, this means that if we narrow
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the filters, we must increase the pump power in order to
keep the coincidence rate constant. Strictly speaking, the
quantity P2c∆B/∆b is the probability per qubit of creat-
ing a photon pair such that the photon in mode b passes
through the (larger) filter. However, ∆A/∆a � ∆B/∆b

holds in magnitude for typical down-conversion processes
and filters; consequently, P2c∆B/∆b � R̄ is an estimate
of the probability of creating a detectable pair.

The results of this section are based on the assump-
tion that the four-photon state is always described by two
independent pairs. Note that this assumption is certainly
good in the case of cw pump, because the time resolution
of the detector is much larger than the coherence time
of the down-converted photons. The assumption is more
questionable in the case of a pulsed pump. The rest of
the paper shows, focusing specifically on time-bin entan-
glement, that the degradation of visibility (3) is actually
independent of the coherence of the four-photon term.

3 General approach

3.1 The state out of down-conversion

The formalism to describe multimode down-conversion
was introduced in references [15,16] for the two-photon
component, and extended to the four-photon component
for type-I down-conversion in [17]. We have applied this
formalism to our case in reference [9]; we summarize here
the main notations and results.

The pump field is assumed to be classical, composed of
two identical but delayed pulses: P (t) =

√
Ip

(
p(t) + p(t +

τ)
)
, so in Fourier space

P̃ (ω) =
√

Ipp̃(ω)
(
1 + eiωτ

)
. (4)

We use collinear type-I down-conversion in a non-
degenerate regime ωs �= ωi; therefore, the signal and the
idler photons can be coupled into different spatial modes a
and b using a wavelength division multiplexer (WDM).
The phase-matching function is written Φ(ωa, ωb); we
don’t need its explicit form in what follows. For conve-
nience we define the following notations:

Φ(x, y)p̃(x + y)(1 + ei(x+y)τ ) ≡ g(x, y)(1 + ei(x+y)τ )
≡ G(x, y). (5)

The state produced by the down-conversion in the crystal
reads

|Ψ〉 = i
√

IA†|vac〉 +
I

2
(A†)2|vac〉 + O(I3/2) (6)

where I is proportional to the intensity Ip of the pump,
and

A† =
∫

dωadωbG(ωa, ωb)a†(ωa)b†(ωb). (7)

3.2 Detection: generalities

We have just given the state |Ψ〉 created by down-
conversion. This state evolves through the set-up (in our
case, a linear optics one so that the number of photons
is conserved) according to |Ψ〉 → |Ψ̂〉, then two-photon
coincidences are recorded. Here we introduce the general
scheme for this detection. Let’s write a1 and b1 the spa-
tial modes on which one looks for coincidences; since no
ambiguity is possibly, we write a1 and b1 also the corre-
sponding annihilation operators. We look at detector on
mode a1 at time TA ± ∆T , where ∆T is the time resolu-
tion of the detectors; similarly for detection on mode b1.
The coincidence rate reads

R(TA, TB) = ηAηB

∫ TA+∆T

TA−∆T

dtA

∫ TB+∆T

TB−∆T

dtB

× ‖ E(+)
a1

(tA)E(+)
b1

(tB)|Ψ̂〉 ‖2 . (8)

In this formula, ηA,B are constant factors [18] that will be
omitted in all that follows; the positive part of the electric
field on mode a1 is defined as

E(+)
a1

(t) =
∫

dνfA(ν)e−iνta1(ν). (9)

With fA(ν) is a real function describing a filter in mode a1,
the transmission of the filter being FA(ν) = fA(ν)2. The
definition of E

(+)
b1

(t) is analogous. We choose the origin
of times in order to remove the free propagation from the
crystal to the detectors. Therefore, the first time-bin at the
detection is given by tj = 0, the second time-bin by tj = τ
and so on.

Actually, formula (8) for detection is exact for propor-
tional counters, in which the probability of detection is the
intensity of the field. For photon counting with a detector
of quantum efficiency η, the probability of the detector
firing, given that n photons imping on it, is not nη (pro-
portional to the intensity) but (1 − (1 − η)n). Now, for
the wavelengths that we consider, the quantum efficiency
is η ≈ 0.1; moreover, the mean number of photons that
imping on a detector is much smaller than 1 because of
the losses in the fibers and in the coupling; finally, in our
formalism we restrict to the four-photon term, so that at
most two photons can imping on the detector. All in all,
the approximation (1 − (1 − η)2) � 2η holds and we can
indeed use (8) to compute the coincidence rate.

3.3 Important parameters

As we said in the introduction, we shall postpone the de-
tailed calculations to Appendix. All the results of Sec-
tions 4 and 5 can be formulated using the following
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parameters: writing dω = dωadωb,

J =
∫

dω |g(ωa, ωb)|2 , (10)

JA =
∫

dωFA(ωa) |g(ωa, ωb)|2 (11)

JB =
∫

dωFB(ωb) |g(ωa, ωb)|2 (12)

JAB =
∫

dωFA(ωa)FB(ωb) |g(ωa, ωb)|2 , (13)

J4 =
∫

dωdω′FA(ωa)FB(ωb)
[
g∗(ωa, ωb)g∗(ω′

a, ω′
b)

× g(ωa, ω′
b)g(ω′

a, ωb) + c.c.
]
. (14)

The first four numbers can be given an intuitive meaning.
In fact, up to multiplicative factors: J is the probability
of producing two photons in one pump pulse, irrespective
of whether they will pass the filter or not; JA and JB are
the probabilities of producing two photons in one pump
pulse, and that the photon in mode a (resp. b) passes
through the filter; JAB is the probability of producing
two photons in one pump pulse and both photons pass the
filter. The interpretation of J4 is somehow more involved:
it is a coherence term, due to the fact that the four photon
state cannot be described as two independent pairs [9].

Obviously, JAB = JA if no filter is applied on B. But
JAB = JA holds to a very good approximation also if
∆A < ∆B , where ∆X is the width of filter FX , provided
that both filters are larger than the spectral width of the
pump ∆p (as we supposed in Sect. 2, and as will be the
case in the experiment). In fact, in this case, detection of
a photon in filter A automatically ensures that its twin
photon has a frequency within the range of filter B, which
means FB(ωb) = 1 for all ωb compatible with the phase-
matching condition.

4 A calibration set-up

Before describing the measurement of two-photon inter-
ferences (next section) we present an experimental set-up
that allows to measure the probability ρ of creating a de-
tectable pair in a simple way. This set-up (see Fig. 2) has
been presented in detail in Section IV of reference [6]. We
give here a brief description. A Fourier-transform-limited
pulsed laser is used to create non-degenerate photon pairs
at telecommunication wavelengths (1310 and 1550 nm)
by parametric down-conversion in a non linear-crystal.
The two photons are separated deterministically using a
wavelength-division multiplexer (WDM) and each photon
is detected by single-photon counters (avalanche photodi-
odes). The signal from the two detectors are then sent to
a Time-to-Digital converter, which is used to determine
the histogram of the differences in the time of arrival of
the twin photons.

We apply our formalism to this set-up. For the detec-
tion, since there is no evolution but the free propagation,
we have simply a1 = a and b1 = b. For the preparation, at

Fig. 2. Schematic of the set-up used to measure the parame-
ter ρ.

first sight it seems that our formalism should be modified:
we are dealing with a train of N pulses instead of only two
pulses, so

(
1 + eiωτ

)
should be replaced with

∑N−1
k=0 eiωkτ

in formula (4). However, a closer look shows that we can
do the calculation without any change. In fact, in this par-
ticular set-up there is no interference: then, RC is simply
the sum of the coincidence rates obtained when the two
photons arrive at the same time, while RL is the sum of the
coincidence rates obtained when photon in mode a arrives
a time τ later than the photon in mode b. Since more-
over R(kτ, kτ) = R(0, 0) and R((k +1)τ, kτ) = R(τ, 0) for
all k, we obtain RC = NR(0, 0) and RC = (N −1)R(τ, 0),
so we can focus on only two successive pulses. By the
way, R(0, 0) is proportional to the probability per pulse
of creating one detectable pair (a pair that will pass the
filters).

The calculation is given in the Appendix, and the re-
sults are R(0, 0) = IJAB + O(I2) and R(τ, 0) = I2JAJB ,
that are indeed what one expects because of the meaning
of the J ’s (Sect. 3.3). Therefore, in the limit of large N ,
the ratio ρ between the integrals of the side peak and the
central peak is

ρ = I
JAJB

JAB
. (15)

In most cases, ρ has a simple interpretation. In fact, when-
ever condition ∆p  ∆A < ∆B holds, we have seen above
that JAB = JA and consequently ρ = IJB is the probabil-
ity per pulse of creating a pair such that the photon that
meets the largest filter will pass it. In particular, if there is
no filter on mode b, ρ is the probability per pulse of creat-
ing a pair, as noticed in Appendix of [6]. That derivation
shares with the present one the hypothesis of small de-
tector efficiency, but is otherwise rather different: in our
previous paper, we supposed that a 2N -photon state is ac-
tually N independent pairs; here, we limit ourselves to 2
and 4 photons, but derive the result without any assump-
tion about the coherence of the 4-photon state.

Moreover, as argued in Section 2, since JA � JB nor-
mally holds, at least in magnitude, then ρ � IJA = R(0, 0)
is an estimate of the probability per pulse of creating a de-
tectable pair.
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Fig. 3. Schematic of the set-up used to measure two photon
quantum interference with time-bin entangled qubits. In ad-
dition to the two-photon coincidence, a coincidence with the
pump laser provides the origin of time needed to define the
three time-bins.

5 The Franson interferometer

5.1 Description of the set-up

We turn now to the main set-up, which is the interfer-
ometer that allows the analysis of time-bin entanglement
(see Fig. 3). This is essentially the interferometer proposed
by Franson to study energy-time entanglement [19], com-
pleted with an unbalanced interferometer before the crys-
tal (the pump interferometer). A laser pulse is first split
in two in this interferometer. At its exit, we have two laser
pulses with a fixed phase difference separated by a time τ
corresponding to the path length difference between the
long and the short arm of the interferometer. In the non
linear crystal, we therefore create a photon pair in a co-
herent superposition of two time-bins.

After the crystal, the photons are separated with the
WDM and each sent to a fiber interferometer in order to
make a two photon interference experiment.

5.2 Evolution

The evolution of modes a and b in each arm of the inter-
ferometer is given by the following expressions:

a†(ω) −→ â†(ω) = S(ω, α)a†
1(ω) + C(ω, α)a†

2(ω) (16)

b†(ω) −→ b̂†(ω) = S(ω, β)b†1(ω) + C(ω, β)b†2(ω) (17)

with [20]

S(ω, θ) =
1 − ei(ωτ+θ)

2
, C(ω, θ) = i

1 + ei(ωτ+θ)

2
. (18)

The evolved state |Ψ̂〉 is obtained by inserting the evolved
operators â† and b̂† into |Ψ〉.

In these formulae, we have already supposed that the
analyzing interferometers are identical to the pump inter-
ferometer. Thus, three time-bins are defined by the set-up.
The first time-bin, t = 0, corresponds to the time of ar-
rival of photons produced by the first pump pulse and
not delayed. The second or intermediate time-bin, t = τ ,
corresponds to the time of arrival, either of photons pro-
duced by the first pump pulse and delayed, or of photons
produced by the second pump pulse and not delayed. The
third time-bin, t = 2τ , corresponds to the time of arrival of
photons produced by the second pump pulse and delayed.
Interferences will only be seen when both photons arrive
at t = τ , because only in this case two indistinguishable
alternatives are available.

5.3 Two-photon interferences

We study the detection for modes a1 and b1; all the other
cases can be treated in the same way. The coincidence
rate R(TA, TB) is the sum of two terms corresponding re-
spectively to the two-photon and the four-photon terms:

R2(TA, TB) = I

∫
dtAdtB

× ‖ E(+)
a1

(tA)E(+)
b1

(tB)Â†|vac〉 ‖2, (19)

R4(TA, TB) =
I2

4

∫
dtAdtB

× ‖ E(+)
a1

(tA)E(+)
b1

(tB)
(Â†)2|vac〉 ‖2 . (20)

Indeed, the two- and the four-photon states do not inter-
fere (in principle, one could insert a non-destructive mea-
surement of the number of photons just after the crystal,
and this would not modify the rest of the experiment).

The calculation is presented in Appendix. As said
above, interferences will appear only in the intermediate
time-bin TA = TB = τ , in which case one finds [21]:

R2(τ, τ) = IJAB

(
1 + cos(α + β)

)
(21)

R4(τ, τ) = I2
[(

2JABJ + J4)
(
1 + cos(α + β)

)
+ 2JAJB

]
.

(22)

The result for R2(τ, τ) is the expected one: one pair is
produced, it passes the filters, and since it is in a su-
perposition of being in both pulses it gives rise to full-
visibility interferences. In the formula for R4(τ, τ), two
contributions are also expected from the intuitive view of
the four-photon state as two independent pairs: (i) the
term containing JABJ means that two pairs are created,
the photons of the same pair are detected and therefore
one has full visibility; (ii) the term containing JAJB means
that two pairs are created, the photons of the different pair
are detected and therefore they don’t show any interfer-
ence. The remarkable feature is the position of the correc-
tion due to the coherence in the four-photon term, J4: it
contributes to a full-visibility interference as well. This
couldn’t have been guessed without the full calculation.
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Summing (21) and (22), the total two-photon coinci-
dence rate in the intermediate time-bin reads

R(τ, τ) = R2(τ, τ)+R4(τ, τ) = R̄
[
1+V cos(α+β)

]
(23)

where the average count rate R̄ is given by [21]

R̄ = IJAB + O(I2) (24)

and the visibility V is given by V = 1+I(J+J4/JAB)
1+I(J+(J4+JAJB)/JAB) .

Now, the terms O(I2) in the visibility are meaningless,
because the six-photon term that we neglected completely
contributes to the same order; so we have to keep only
the first-order development of V in I, that leads to the
remarkable relation

V � 1 − I
2JAJB

JAB
= 1 − 2ρ (25)

where ρ is exactly the same as defined in (15). As an-
nounced in Section 2, J4 drops out of the visibility: to the
leading order in I, the loss of visibility is independent of
the coherence of the four-photon state.

Since ρ is basically the probability per pulse (so that 2ρ
is the probability per qubit [14]) of creating a detectable
pair, it defines the detection rate up to multiplicative fac-
tors. Relation (25) therefore says that, if we fix a detection
rate, we shall find a given visibility, no matter whether the
rate was obtained by pumping weakly and putting no fil-
ters, or by pumping strongly and putting narrow filters.
This is a positive feature: filters, while being useful to
improve the coherence whenever this is required, do not
degrade the visibility.

As described in Section 4, ρ can be measured inde-
pendently, the relation (25) can be experimentally tested.
This is the object of the next section.

6 Experimental verification

In this section, we present an experimental verification
of equation (25). Two-photon interference fringes are
recorded for different value of ρ, corresponding to differ-
ent values of pump power, with the Franson set-up de-
scribed in the previous section. Let us remind the reader
that the down-converted photons are at the two telecom
wavelengths, 1310 nm and 1550 nm. The measurement are
reported for two different filters configurations; in both
cases, the larger filter is on the photons at 1550 nm, so
this is “mode b”.

In the first configuration, only the photon at 1310 nm is
filtered with 40 nm FWHM. These data are taken from [6].
In the second configuration, both photon are filtered. The
photon at 1310 nm is filtered with 10 nm FWHM, while
the photon at 1550 nm is filtered with 18 nm FWHM. The
coefficient ρ is measured using the side peaks method ex-
plained in Section 4. The visibility for the two experimen-
tal configurations is plotted as a function of 2ρ in Figure 4.
The error bars on the experimental points represent the
accuracy of the fit of the recorded interference patterns

Fig. 4. Visibility as a function of 2ρ for two different filter-
ing configurations. Full squares are experimental points with a
40 nm filter at 1310 nm and no filter at 1550 nm (data taken
from [6]). Open circles are experimental points with a 10 nm fil-
ter at 1310 nm and a 18 nm filter at 1550 nm. The solid curves
are straight line with a slope −1, according to equation (25).

with a sine law [22]. The two solid lines are straight lines
with slope −1, according to equation (25); the small shift
between the two curves is due to the fact that the maxi-
mal visibility was not the same for both experiments and
was left free as a fitting parameter. We observe a good
agreement between theory and experiment. These results
confirm that the loss of visibility due to four-photon events
is directly related to ρ, regardless of the filtering that is
applied on the photons and regardless of the coherence of
the four-photon component [9]. This is therefore a gen-
eral result very useful to estimate the effect of multi-pair
creation in an experiment in a very simple way.

7 Conclusion

In summary, we have found a quantitative prediction
for the loss of two-photon interference visibility due to
the presence of a four-photon component in the down-
converted field. The loss of visibility (25) is determined
by the parameter ρ (15), that is close to the probability
of creating a detectable pair. This parameter can be mea-
sured independently, thus allowing a direct experimental
verification of our prediction. While the full calculation
was worked out for time-bin entanglement, we have pre-
sented in Section 2 a simplified derivation that gives the
same result and applies to any form of entanglement gen-
erated by down-conversion.

We acknowledge fruitful discussions with Antonio Aćın,
Christoph Simon and Wolfgang Tittel.

Note added in proof

Since this work was finished, we have learnt of two in-
dependent papers [23,24] that discussed the loss of vis-
ibility of two-photon interferences due to the presence
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of higher-photon-number components. Both calculations
concern entanglement in polarization and have been done
in the single-mode formalism: this allows to take into ac-
count the contribution of all more-photon terms and not
only of the four-photon one. The results are compatible
with ours in the regime where they can be compared (small
pump power). Consider for instance reference [24]: from
their equation (2), we see that the probability per qubit
of producing a pair is 2 tanh2 τ/ cosh4 τ ≈ 2τ2. Then our
formula (3) predicts V ≈ 1 − 2τ2 for small values of τ ,
which indeed fits correctly the curve of Figure 5 of refer-
ence [24] up to τ ≈ 0.5.

Appendix A

We recall the definitions of R2 and R4, formulae (19)
and (20). Although we introduced them only in Section 5,
the same quantities can be defined for the set-up of Sec-
tion 4, and in fact for any set-up: a given set-up will
be characterized by the relation between the preparation
modes a, b, and the detection modes a1, b1, a relation en-
coded in the operator Â†. In this appendix, we start by
working out more explicitly the general formulae for R2

and R4; we subsequently describe the strategy that al-
lows a simplification of these formulae (a strategy already
introduced in Ref. [9]), and finally compute the explicit
results announced in Sections 4 and 5.

A.1 General formula for R2

The calculation of R2 goes as follows. The commutation
rules between the input modes a, b and the detected
modes a1, b1 read

a1(νa)â†(ωa) = â†(ωa)a1(νa) + E(ωa, α)δ(ωa − νa)11
(26)

b1(νb)b̂†(ωb) = b̂†(ωb)b1(νb) + E(ωb, β)δ(ωb − νb)11 (27)

where E(ω, γ) is a function that depends on the evolution
undergone by the modes from the production to the detec-
tion — specifically, E(ω, γ) = 1 for the calibration set-up,
while E(ω, γ) = S(ω, γ) given in (18) for the Franson set-
up. Using these commutation relations, one finds immedi-
ately E

(+)
a1 (tA)E(+)

b1
(tB)Â†|vac〉 = c(tA, tB)|vac〉 where we

have introduced the complex number

c(tA, tB) ≡
∫

dωfA(ωa)fB(ωb)G(ωa, ωb)E(ωa, α)

× E(ωb, β)e−i(ωatA+ωbtB). (28)

Consequently, R2 = I
∫

dtAdtB|c(tA, tB)|2. The integra-
tion over tA and tB can be performed before the integrals

over the frequencies, so finally

R2(TA, TB) = I

∫
dωdω′fA(ωa)fB(ωb)g(ωa, ωb)

× fA(ω′
a)fB(ω′

b)g
∗(ω′

a, ω′
b)

×
(
1 + ei(ωa+ωb)τ

) (
1 + e−i(ω′

a+ω′
b)τ

)

× E(ωa, ωb, ω
′
a, ω′

b)

× e−i(ωa−ω′
a)TAe−i(ωb−ω′

b)TB (∆T )2

× sinc[(ωa − ω′
a)∆T ]sinc[(ωb − ω′

b)∆T ]
(29)

where we have defined the shortcut

E(ωa, ωb, ω
′
a, ω′

b) = E(ωa, α)E(ωb, β)E∗(ω′
a, α)E∗(ω′

b, β).
(30)

In (29), the first two lines are simply the expansion of
the G’s and the evolution term E ; the last line is the result
of the integration over tA and tB.

A.2 General formula for R4

The calculation of R4 follows exactly the same structure
as the calculation of R2, only the formulae are heavier.
Using

a1(ν)â†(ω)â†(ω′) = â†(ω)â†(ω′)a1(ν)

+ E(ω, α)δ(ω − ν)â†(ω′) + E(ω′, α)δ(ω′ − ν)â†(ω) (31)

and the analogous relation for mode b, one finds

E(+)
a1

(tA)E(+)
b1

(tB)
(Â†)2|vac〉 =

|AB〉 + |A′B′〉 + |A′B〉 + |AB′〉
≡ 2(|AB〉 + |AB′〉). (32)

We have defined

|AB〉 =
∫

dωdω′G(ωa, ωb)G(ω′
a, ω′

b)Z(ωa, ωb, ω
′
a, ω

′
b)|vac〉

where Z is the non-normalized two-photon creation
operator

Z(ωa, ωb, ω
′
a, ω′

b) = fA(ωa)fB(ωb)e−i(ωatA+ωbtB)E(ωa, α)

× E(ωb, β)a†
1(ω

′
a)b†1(ω

′
b);

|AB′〉 is obtained from |AB〉 by replacing ωb ↔ ω′
b in Z,

or equivalently by relabelling the integration variables:

|AB′〉 =
∫

dωdω′G(ωa, ω′
b)G(ω′

a, ωb)

× Z(ωa, ωb, ω
′
a, ω′

b)|vac〉.
Obviously, by simply exchanging primed and unprimed
integration variables, |AB〉 = |A′B′〉 and |AB′〉 = |A′B〉,
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whence the r.h.s. of (32). Inserting (32) into (20), we see
that the quantity that we must compute is

R4(TA, TB) = I2

∫
dtAdtB

[〈AB|AB〉
+

(〈AB|AB′〉 + c.c.
)

+ 〈AB′|AB′〉]

= R4,1(TA, TB) +
[
R4,2(TA, TB) + c.c.

]

+ R4,3(TA, TB). (33)

The integrals over tA and tB are exactly the same ones
that we had in the calculation of R2.

The first term of the sum (33) is the easiest one,
and can be given in closed form. In fact, in |AB〉
the integrals over ω and ω′ are factored, and in ad-
dition, the integral on ω gives the same c(tA, tB) that
we met in the calculation of R2, formula (28). That is,
|AB〉 = c(tA, tB)

∫
dω′G(ω′

a, ω′
b)a

†
1(ω

′
a)b†1(ω

′
b)|vac〉. Con-

sequently, R4,1(TA, TB) = IR2(TA, TB)
∫

dω |G(ωa, ωb)|2
where we recall that G(ωa, ωb) = g(ωa, ωb)(1+ei(ωa+ωb)τ ).
Anticipating over the discussion of the next subsection,
we use here the fact that the terms that fluctuate in τ
average to zero; so the last integral is finally equal to
2

∫
dω |g(ωa, ωb)|2 = 2J . In conclusion, the first term of

the sum (33) is

R4,1(TA, TB) = 2IJR2(TA, TB). (34)

The second term of the sum (33), R4,2(TA, TB) =
I2

∫
dtAdtB〈AB|AB′〉 gives

I2

∫
dωdω′dω̃fA(ωa)fA(ω′

a)fB(ωb)fB(ω′
b)

× g∗(ω̃a, ω̃b)g∗(ω′
a, ω′

b)g(ω̃a, ωb)g(ωa, ω̃b)

×
(
1 + e−i(ω̃a+ω̃b)τ

)(
1 + e−i(ω′

a+ω′
b)τ

)(
1 + ei(ω̃a+ωb)τ

)

×
(
1 + ei(ωa+ω̃b)τ

)
E(ωa, ωb, ω

′
a, ω

′
b)

× e−i(ωa−ω′
a)τe−i(ωb−ω′

b)τ (∆T )2sinc[(ωa − ω′
a)∆T ]

× sinc[(ωb − ω′
b)∆T ]. (35)

The third term R4,3(TA, TB) = I2
∫

dtAdtB〈AB′|AB′〉
gives

I2

∫
dωdω′dω̃fA(ωa)fA(ω′

a)fB(ωb)fB(ω′
b)

× g∗(ω̃a, ω′
b)g

∗(ω′
a, ω̃b)g(ω̃a, ωb)g(ωa, ω̃b)

×
(
1 + e−i(ω̃a+ω′

b)τ
)(

1 + e−i(ω′
a+ω̃b)τ

)(
1 + ei(ω̃a+ωb)τ

)

×
(
1 + ei(ωa+ω̃b)τ

)
E(ωa, ωb, ω

′
a, ω

′
b)

× e−i(ωa−ω′
a)τe−i(ωb−ω′

b)τ (∆T )2sinc[(ωa − ω′
a)∆T ]

× sinc[(ωb − ω′
b)∆T ]. (36)

Note that, as it should, the difference between
R4,2(TA, TB) and R4,3(TA, TB) is only in the contribution
of the G’s, lines one and two.

A.3 Strategy of the calculation

One cannot go beyond the formulae that we just de-
rived for R2 and R4 without specifying what the evolution
E(ωa, ωb, ω

′
a, ω′

b) is (that is, without specifying the set-up)
and without a simplification strategy. Here is how this
strategy goes [9].

1. We first notice that the times TA, TB of interest are
typically 0, τ etc.; and as we said, E(ωa, ωb, ω

′
a, ω

′
b)

is also a product of terms containing either 1 or
some eiωτ . So all our integrals for R2 and R4 are in
fact sums of integrals of the form

∫
dωF(ω)eiΩ(ω)τ .

Here, F is a product of g(ω, ω′)’s (spectral function of
the pump and phase matching conditions) and of car-
dinal sines sinc((ω − ω′)∆T ) associated to the time-
resolution of the detectors; Ω is an algebraic sum of
the some of the integration variables ω.

2. Because we want the two pump pulses to be well-
separated (well-defined time-bins), it turns out that
all the integrals in which Ω �= 0 will average to zero.
In fact, the typical width of g is 1/tpump

c ≥ 1/∆t,
where tpump

c and ∆t are, respectively, the coherence
time and the temporal width of each pump pulse p(t).
If the time-bins are to be well-defined, we must im-
pose τ � ∆t. Moreover, if one wants to distinguish the
time-bins at detection, one must also have a sufficiently
small time-resolution for the detector; so τ � ∆T . In
summary: in the frequency domain (which is the inte-
gration domain), if Ω �= 0 the term eiΩ(ω)τ fluctuates
with period 1/τ , while in this range F(ω) is almost
constant. The second step of the calculation consists
then in going through the factors to sort out those in-
tegrals in which Ω = 0. This is the clever trick that
allows one to obtain readable formulae.

3. This being done, one can also perform the
limit ∆T −→ ∞, leading to sinc(x∆T ) � (1/∆T )δ(x).
In fact, x is of the form ω − ω′, and this is in aver-
age close to the spectral width of each down-converted
photon 1/tph

c . But a detector cannot detect a photon
unless ∆T � tph

c . This is the precise meaning of the
formal limit ∆T −→ ∞. Obviously this limit must be
performed after the estimate described in point 2.

In summary, for each of the set-ups that we want to study,
we must replace E(ωa, ωb, ω

′
a, ω′

b) with its explicit value,
then by inspection identify those terms for which the de-
pendence in τ identically vanishes under the integral.

A.4 Calculations for Section 4

For the calibration set-up of Section 4, we must com-
pute R(0, 0) and R(τ, 0). Here, E(ωa, ωb, ω

′
a, ω

′
b) = 1 be-

cause the modes don’t evolve from the preparation to
the detection. Then, R2 given in (29) is the sum of four
integrals because of the product in line two; while R4,2

and R4,3 given respectively by (35) and (36) are the sum
of sixteen integrals because of the products in line two.

Let’s set TA = TB = 0, and look first at R2. Only
the product 1 × 1 gives an integral whose argument does
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not contain τ , so we forget about the three other inte-
grals. Through the limit sinc(x∆T ) � δ(x)/∆T , we ob-
tain ωj = ω′

j and consequently R2(0, 0) = IJAB. So we
have obtained R(0, 0) = IJAB + O(I2) as announced.

If we set TA = τ , TB = 0, it is easy to become con-
vinced that none of the four integrals that compose R2 can
become independent of τ ; therefore, R2(τ, 0) = 0 and we
must compute R(τ, 0) = R4(τ, 0). Obviously, R4,1(τ, 0) =
0 because it is proportional to R2. By inspection, one
sees that R4,2(τ, 0) = 0 as well since none of the six-
teen integrals can be made independent of τ . In R4,3(τ, 0),
only the integral associated to the product 1e1e (with
obvious notations) is independent of τ . For this inte-
gral, we can again set ωj = ω′

j and we obtain finally
R(τ, 0) = R4,3(τ, 0) = I2JAJB as announced.

A.5 Calculation for Section 5

For the Franson interferometer of Section 4, we must com-
pute R(τ, τ). Here however,

E(ωa, ωb, ω
′
a, ω′

b) =
(
1 − ei(ωaτ+α)

) (
1 − ei(ωbτ+β)

)

×
(
1 − e−i(ω′

aτ+α)
)(

1 − e−i(ω′
bτ+β)

)
, (37)

where we dropped a global factor 1/24. Consequently,
R2 given in (29) is the sum of 26 = 64 integrals, while R4,2

and R4,3 given respectively by (35) and (36) are the sum
of 28 = 256 integrals.

Let’s look at R2. By inspection, one finds that the
integrals whose argument is independent of τ are four:
ee|1111, that gives a contribution 1; 11|eeee, that also
gives a contribution 1; 1e|ee11, whose contribution is
ei(α+β); and e1|11ee, whose contribution is e−i(α+β). In
these notations, the first two items correspond to the prod-
ucts of terms of line two, the last four items correspond
to the products within E . Finally, performing the limit
∆T −→ ∞ we find

R2(τ, τ) = 2IJAB

(
1 + cos(α + β)

)
(38)

that is indeed (21) up to a multiplicative factor 2. Imme-
diately then we have also

R4,1(τ, τ) = 4I2JAB

(
1 + cos(α + β)

)
(39)

accounting for the first term of the r.h.s. of (22).
Moving to R4,2, by inspection, one can verify that

the only integrals that will not average to zero are
those associated to the following four products: 1111|eeee
and eeee|1111, both giving 1; 1e11|ee11, that gives ei(α+β);
and e1ee|11ee, that gives e−i(α+β). As before, in these no-
tations the first four items represent the terms of line two
of (35), the last four items correspond to the products
within E . After the usual limit, one finds

R4,2(τ, τ) + c.c. = 2I2J4

(
1 + cos(α + β)

)
(40)

accounting for the second term on the r.h.s. of (22).

As for R4,3, again only four integrals out of 256 will
not average to zero, namely those associated to 1111|eeee,
eeee|1111, 1e1e|e1e1 and e1e1|1e1e; however here, all
these contributions give simply 1, so finally

R4,3(τ, τ) = 4I2JAJB (41)

that is the last term in the r.h.s. of (22). This concludes
our demonstration.
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